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Abstract: SpatDIF, the Spatial Sound Description Interchange Format, is an ongoing collaborative effort offering a
semantic and syntactic specification for storing and transmitting spatial audio scene descriptions. The SpatDIF core
is a lightweight minimal solution providing the most essential set of descriptors for spatial sound scenes. Additional
descriptors are introduced as extensions, expanding the namespace and scope with respect to authoring, scene
description, rendering, and reproduction of spatial sound. A general overview presents the principles informing the
specification, as well as the structure and the terminology of the SpatDIF syntax. Two use cases exemplify SpatDIF’s
potential for pre-composed pieces as well as interactive installations, and several prototype implementations that have
been developed show its real-life utility.

Introduction

SpatDIF, the Spatial Sound Description Interchange
Format, presents a structured approach for working
with spatial sound information, one that addresses
the different tasks involved in creating and perform-
ing spatial sound.

A major problem when working on spatial sound
is that the methods and the resulting works are
often tied to a specific system or infrastructure—for
example, with regards to the software used for
composition and reproduction or the available
speaker arrangement and the characteristics of the
physical venue. The lack of flexibility this produces
impedes the exchange of pieces between different
venues, the mixing of different tools for authoring
or performing the piece, and ultimately the
preservation of the work in a sustainable form that
is independent of the technology used to create it.

The goal of SpatDIF is to simplify and enhance
the methods of working with spatial sound content.
SpatDIF proposes a simple, minimal, and extensible
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format as well as best-practice implementations
for storing and transmitting spatial sound scene
descriptions. It encourages portability and the
exchange of compositions between venues with
different surround-sound infrastructures. SpatDIF
also fosters collaboration between artists such as
composers, musicians, sound installation artists,
and sound designers, as well as researchers in the
fields of acoustics, musicology, sound engineering,
and virtual reality.

SpatDIF strives to be human-readable, eas-
ily understood and unambiguous, platform- and
implementation-independent, extensible, and free
of license restrictions.

SpatDIF’s applications are not limited to the
sound-scene concept alone. With both its ability to
communicate time-independent metadata and its
extensibility with further types of data descriptors,
the format is open to other related fields such as
sound synthesis, compositional algorithms, and
abstract spatial geometry.

SpatDIF is developed as a collaborative effort and
has evolved over a number of years. The online
community and all related information can be found
at www.spatdif.org.
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History and Progress

The term SpatDIF was coined in 2007 when Peters,
Ferguson, and McAdams stated the necessity for a
format to describe spatial sound scenes in a struc-
tured way, since at that time the available spatial
rendering systems all used self-contained syntax and
data formats. Through a panel discussion (Kendall,
Peters, and Geier 2008; Peters 2008) and other
meetings and workshops, the concept of SpatDIF
has since been extended, refined, and consolidated.

After a long and thoughtful process, the SpatDIF
specification was informally presented to the spatial
sound community at the International Computer
Music Conference in Huddersfield in August 2011
and at a workshop at the Technische Universität
Berlin in September 2011. The responses in these
meetings suggested the urgent need for a lightweight
and easy-to-implement spatial sound scene standard,
which could contrast with the complex MPEG
specification (Scheirer, Vaananen, and Huopaniemi
1999). In addition, many features necessary to
make this lightweight standard functional were
put forward—for example, the capability of dealing
with temporal interpolation of scene descriptors.
The feedback from these meetings and numerous
discussions prompted the writing of this overview
of the revised SpatDIF specification. This article
is a revised version of an earlier conference paper
(Peters, Lossius, and Schacher 2012).

Other Initiatives

Over the years several formats and frameworks have
been proposed with the goal of platform-agnostic
playback and re-usability of scene elements. With
the introduction of MPEG-4 AudioBIFS (Scheirer,
Vaananen, and Huopaniemi 1999) by the audio
industry, a comprehensive format for sound scene
description, multimedia content creation, and
delivery was established. According to Geier,
Ahrens, and Spors (2010), however, no complete
implementation of the MPEG-4 system is available,
because the MPEG-4 specification is large and hard
to implement.

Spatial sound libraries such as OpenAL, FMOD,
Wwise, and irrKlang primarily target the gaming
market. They are easy to integrate, but lack a

number of music-performance-related features and
the flexibility necessary for artistic work.

Furthermore, proprietary object-based audio
formats are also under development in the cinema
industry, such as those by Dolby (2012), or Iosono
(Melchior 2010). The specification by Creative
Technology (2009) for controlling spatial audio
content using the MIDI protocol also seems to
be tailored towards cinema applications, as is
discernible in the way it facilitates (for example) the
“fly-by” trajectories (front-to-back and back-to-front
movements) typical of action movies.

Partially inspired by the Virtual Reality Modeling
Language (VRML) and X3D (Web3D Consortium
2004), several groups have presented XML-based
scene description formats—for instance, Hoffmann,
Dachselt, and Meissner (2003), Potard and Ingham
(2003), or Geier, Ahrens, and Spors (2010).

Based on the binary Sound Description In-
terchange Format (SDIF), Bresson and Schumacher
(2011) presented a workflow for interchange of sound
spatialization data primarily used for algorithmic
composition applications. Recently, Wozniewski,
Quessy, and Settel (2012) presented Spat-OSC, a
C++ library that circumvents the development of
an interchange format altogether by communicat-
ing directly with a number of specific rendering
interfaces through a dedicated Open Sound Control
(OSC) syntax.

A Stratified Approach

When dealing with spatialization in electroacoustic
composition or linear sound editing, the workflow
comprises a number of steps necessary to construct,
shape, and realize the spatial qualities of the
work. After analyzing the current paradigms in
spatial sound processing, a stratified approach to
sound spatialization was proposed (Peters et al.
2009) that encourages the use of a clear structure,
flexibility, and interoperability. We identified the
underlying common elements present when sound
spatialization is used, and structured them in
a tiered model that comprises six functionally
distinct layers, as will be later shown in Figure 3.

The topmost authoring layer encompasses the ab-
stract creation processes that describe how and when
audio content might be positioned and moved within
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the space. A number of different processes and
methodologies can be envisioned that avoid a need
to directly control underlying audio processes. Some
examples are symbolic authoring tools, generative
algorithms, interactive processes, and simulations of
emergent behaviors (e.g., swarms or flocks-of-birds).
The scene description layer mediates between the
authoring layer above and the encoding layer below
through an abstract and independent description of
the spatial scene. This description can range from
a simple static scene with one virtual sound source
up to complex dynamic sound scenes including
multiple virtual spaces. In the proposed model,
the actual spatial sound rendering is considered to
consist of two layers. The encoding layer produces
encoded signals containing spatial information
while remaining independent of, and “agnostic” of,
the speaker layout. Processing of sources to create an
impression of distance, such as Doppler effect, gain
attenuation, and air absorption filters, are considered
to belong to the encoding layer, as is the synthesis of
early reflections and reverberation, as demonstrated
by surround effects that use Ambisonic B-Format
impulse-response convolution. The decoding layer
interprets the encoded signals and decodes it for
the speaker layout at hand. Not every rendering
technique generates intermediate encoded signals:
Some can instead be considered to encapsulate the
encoding and decoding layers in one process. Am-
bisonics B-Format, higher-order Ambisonics (HOA),
and Directional Audio Coding (DirAC) (Pulkki 2007)
are examples of spatialization techniques providing
intermediate encoded formats, while wavefield syn-
thesis (WFS), Vector Base Amplitude Panning (VBAP)
(Pulkki 1997), Distance-based Amplitude Panning
(DBAP) (Lossius, Baltazar, and de la Hogue 2009), Vir-
tual Microphone Control (ViMiC) (Braasch, Peters,
and Valente 2008) and Ambisonics equivalent pan-
ning (Neukom and Schacher 2008) are examples of
techniques without an intermediate sound represen-
tation. The hardware abstraction layer provides the
audio services that run in the background of a com-
puter operating system and manage multichannel
audio data between the physical devices and higher
layers. Finally, the physical device layer defines the
electrical and physical specifications of devices that
create the acoustical signals, such as sound cards,
amplifiers, loudspeakers, and headphones.

SpatDIF Structure

SpatDIF presents a hierarchical, unambiguous
structure. The SpatDIF-syntax serves to structure
information related to sound scenes.

The SpatDIF Philosophy

From the very beginning, one of the guiding prin-
ciples for SpatDIF was the idea that the authoring
and the rendering of spatial sound might occur at
completely separate times and places, and might
be executed with tools whose capabilities cannot
be known in advance. The goal was to formulate
a concise semantic structure that is capable of
carrying the necessary information, without being
tied to a specific implementation, thought model or
technical method. SpatDIF is a syntax rather than a
programming interface or file format. SpatDIF may
be represented in any of the structured mark-up
languages or message systems that are in use today
or in the future. Examples of streaming SpatDIF data
(via OSC) and storing it (via XML, YAML, or SDIF)
accompany the specification in a separate document.

SpatDIF describes only the aspects required for the
storage and transmission of spatial information. A
complete work typically contains additional aspects
that exceed the scope of SpatDIF. These are only
addressed to the extent necessary for linking the
elements to the descriptions of the spatial aspects
(e.g., the Media resources).

Terminology

A SpatDIF scene is the combination of a space and
the sounds and their behaviors that are unfolding
within it. A scene consists of a number of SpatDIF
entities. Entities are all objects that affect or interact
with the sound of that scene. Entities can be of differ-
ent kinds (e.g., sources or sinks). Each entity instance
is assigned a name, so that it may be uniquely iden-
tified within the scene. The properties of entities are
described and transmitted via SpatDIF descriptors. A
complete SpatDIF statement consists of an address
unambiguously identifying an entity and the desired
descriptor, followed by the descriptor’s associated
value. The values associated with descriptors may
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Figure 1. SpatDIF
terminology.

change over time. All entities and descriptors are
defined within the SpatDIF namespace.

OSC addresses, for example, need to comply with
the SpatDIF namespace in order to be valid SpatDIF
statements. An OSC message such as /src/1/pos
1.0 5.0 0.0 is considered invalid, because neither
the kind src nor the descriptor pos are defined
within the SpatDIF namespace.

Figure 1 shows a valid SpatDIF statement in
streaming OSC style: The entity is of kind source
and is named romeo, the position descriptor is ad-
dressed, and the vector {1.0 5.0 0.0} is its value.

SpatDIF Specification

This section provides a brief overview of the current
SpatDIF specification (Peters, Schacher, and Lossius
2010–2012).

Meta and Time Sections

A SpatDIF scene can consist of two sections: a meta
section and a time section. The meta section serves
to configure and initialize the system, and the time
section describes the temporal unfolding of a scene.

Meta Section

The meta section contains meta descriptions, and is
located at the beginning of a SpatDIF representation.
It contains information that is not executed at run-
time; timed events are therefore excluded from this
section. The meta descriptions contain information
about: extension setup (see the “Core and Exten-
sions” section of this article), the organization of the
subsequent time section, and general annotation and

documentation, such as documentation about the
technical setup of the original authoring situation.

The meta section can also be used to describe
a static scene or the initial state of a dynamic
scene. The meta section is mandatory for a SpatDIF
representation.

Time Section

The time section holds information about entities
and their descriptors as they unfold over time. Each
statement is located at a specific point in time. If
the scene to be described is static, no temporal data
will be required. For this reason, the time section is
optional.

SpatDIF does not enforce any particular system
for ordering the statements within the time section.
Standard musical notation shows that several
ordering principles exist. Ordering by time is
equivalent to an orchestral score and provides a
complete overview, and ordering by entities groups
the statements into individual parts or tracks. In the
context of real-time streaming of scenes, ordering by
time is necessary, although other ordering principles
may be more appropriate in storage-type scenarios.

Core and Extensions

On the one hand, a standard for interchange of
spatial scenes faces the challenge of having to offer
a compact method for the description of works
in a lightweight format; on the other hand, it has
to cater to more-advanced techniques and various
spatialization methods in an extensible way. SpatDIF
solves this by defining a set of core descriptors and
various extensions.

The SpatDIF Core

The most basic SpatDIF namespace is defined in the
SpatDIF core. The core provides the most essential,
yet extensible set of functionalities for describing
spatial sound scenes. In terms of the layered
model for spatialization as discussed later, the core
only deals with the most fundamental descriptors
required at the scene description layer (layer 5).

A SpatDIF compliant sound renderer must under-
stand and interpret all core statements.

14 Computer Music Journal



Table 1. Core Descriptors for Source Entities

Descriptor Data type Default value Default unit Alternative units

type 1 string point — —
present 1 boolean true — —
position 3 double 0. 0. 0. xyz aed, openGL
orientation 3-4 double 0. 0. 0. euler quaternion, angle-axis

Source entities are the most essential elements
in sound scenes. As can be seen in Table 1, only the
most basic source descriptors are provided by the
core. This table serves as an example to show how
entities are defined in the SpatDIF specification.

A sound source is further specified by the type
descriptor. The core only describes point sources,
therefore point is the default and only possible
value. Extensions introduce additional types in order
to describe more complex kinds of sources, as will
be discussed in the section on extensions. A source
can be dynamically added or removed from a scene
by means of the boolean descriptor present. The six
degrees of freedom of a point source are described by
means of the position and orientation descriptors.
Position as well as orientation can be expressed
using a number of defined coordinate systems, thus
allowing the description of the scene in a flexible yet
unambiguous way. By default, position is described
using Cartesian coordinates and orientation is
described using Euler angles. Conversions between
the different coordinate systems and units are
provided with the specification.

The media resource provides descriptors to assign
media content to the source entities. The SpatDIF
core supports three types of media resources:
live streams, live audio input, and sound files. In
addition, the type can be set to none.

A number of meta-descriptors are defined in the
core, primarily for use in the meta section. These
include annotation for comments; info on author,
session, location, etc.; and what extensions are used
within the SpatDIF scene, as discussed later.

The core provides two time methods that simplify
the description of common patterns of change over
time: Interpolation and Loop. These two general
methods may be applied to any descriptor that
evolves over time (e.g., position, rotation, or even

playback of a sound file). They can also simplify
the process of describing a scene and can improve
readability by thinning out data to reveal common
underlying patterns. Interpolation enables up-
sampling of temporally sparse information.

If a value can be described by several different
units, interpolation is performed according to the
unit of the target value. For example, if a target
position is defined in Cartesian coordinates, the
interpolation will be also performed in Cartesian
coordinates. Based on five position statements,
Figure 2 shows the differences in the trajectory
resulting from linear interpolation in Cartesian vs.
spherical coordinates.

Extensions

When using only the SpatDIF core, information vital
to a faithful reproduction of a spatial sound project
may have been simplified or left out. For example,
the SpatDIF core lacks support for directional
sources and doesn’t describe how spatial sound is
rendered. It is important that additional information
can be included and that details about the original
performance and intentions can be stored for
future reinterpretation or restoration of a work. For
instance, maintaing precise information about all
layers of the spatial workflow may be important for
studying spatial sound performance practice (Harley
1994; Peters, Marentakis, and McAdams 2011).

SpatDIF extensions introduce additional descrip-
tors in a modular way. The extensions expand the
namespace and scope of SpatDIF in relation to au-
thoring, scene description, rendering, and diffusion
of spatial audio.

This permits the use of new descriptors addressing
the remaining layers of the stratified model, and
also enables a richer description of the spatial scene
at layer 5.
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Figure 2. Linear
interpolation of five
position statements in
Cartesian and spherical
coordinate systems.

Extensions might introduce new kinds of entities,
expand the set of descriptors for existing entities, or
augment descriptors defined by other extensions.

Extensions may also address meta-descriptors or
extend and introduce new time-methods.

When a SpatDIF project makes use of extensions,
the meta section is required to declare what ex-
tensions are present. Thus it becomes immediately
apparent what rendering capabilities are necessary
for a complete representation of the scene.

Support for extensions is optional: A renderer
is not required to be able to act on extensions,
and might only support a subset of all available
extension information. If a renderer is unable to
process the statements of a specific extension, it is
expected to fail gracefully. A renderer without any
extension support, for example, might treat all types
of sources as the default point sources, and process
only the core descriptors present, position, and
orientation.

Figure 3 illustrates a number of extensions that
are currently being considered, organized by the
layer they belong to. New extensions will initially
be developed and validated as a collaborative effort
within the SpatDIF community, drawing on experts
within the relevant fields. As the definition of an
extension reaches maturity, it will be added to the
SpatDIF specification.

To facilitate storage of data that is otherwise un-
supported by SpatDIF core and extensions, a private
extension is defined. It serves a purpose similar to
that of System Exclusive (SysEx) messages within
the MIDI specification. Because the syntax and
semantics of the private extension are unspecified,
its use severely hampers interoperability of SpatDIF
scenes—a key goal of the SpatDIF project. It is there-
fore urgently recommended to abstain from using
the private extension and rather make the effort to
provide a generally useful new extension.

Additional Conventions

SpatDIF is governed by some additional general
conventions. In the specification, a default state
is defined for all relevant entities. An initial value
may be explicitly set in the meta section, and it will
override the default. This state can be further altered
by subsequent statements in the time section of the
scene. Entities maintain an internal state—when
new statements are received, untouched descriptors
remain the same. The present flag is an exception;
please refer to the specifications for details.

Descriptors have a default unit, if applicable.
Alternative units may be used as defined in the
specification. For example, several alternative
coordinate systems are supported and can be used
interchangeably. The default system is the Cartesian
Navigational System with x to the right, y in the
forward direction, and z pointing upwards.

Use Cases

The following use cases illustrate two different
applications of the SpatDIF standard.

File-Based Score: Turenas

In 1972 John Chowning completed Turenas, one of
the first computer music compositions to create the
impression of moving sound sources in a 360-degree
space. A quadraphonic tape piece composed using
the non-real-time sound-synthesis language Music
IV, it is famous for its use of Lissajous figures as
sound trajectories (Chowning 2011). In 2011 Laurent
Pottier recreated it as a performance patch for the
real-time processing environment Max/MSP. We
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Figure 3. The layer model
of the SpatDIF namespace.
Extensions with a dashed
frame are under
development.

analyzed this patch to demonstrate how SpatDIF
can be beneficial in this score-based context.

The main score of Pottier’s rendition of Turenas
is stored in a table containing sound-generation
parameters for the patch’s FM synthesis modules.
There are additional trajectory cues that are triggered
from the main score. Each point in these trajectories
consists of: the gains of the four loudspeakers,
to form the panning angle from which a sound
source appears; a gain factor along with the relative
contributions of the direct and reverberant signals,
to form distance cues; and a pitch shift, to simulate
the Doppler effect of a moving source. These eight
values define the spatial properties of a source at
any given point in time. Table 2 illustrates part of
such a trajectory, in this case the beginning of the
Lissajous curve used for spatializating an insect-like
sound at the beginning of Turenas.

The trajectories consist of 60 to 120 discrete sam-
pling points. At runtime, a linear interpolation in
Cartesian coordinates is used for a smooth transition
from one sampling point to the next. Because all
sounds are synthesized by the performance patch,
the tempo of the performance can be altered—for
example, in order to accommodate the reverberant
conditions of the venue.

Referring to our stratified approach in Figure 3,
the Turenas score can be considered as channel-
based rendering instructions for creating a decoded
audio stream (stream B in Figure 3) on the hardware
abstraction layer. Note the special requirements
(in Pottier’s version) of an external four-channel
reverb unit. Such channel-based instructions pose
a challenge to the adaptation of the piece to other
loudspeaker configurations.

The score itself does not specify in which ar-
rangement and sequence the four loudspeakers are
to be placed. With the knowledge of the loudspeaker
positions, however, and by applying an equal-power
panning law to the gain values from Table 2, we
were able to “reverse-engineer” the trajectory (see
left plot of Figure 4).

Using the position descriptor of the SpatDIF
core, the sampling points of Table 2 can now be
described in the time section (using a stream-based
OSC style):
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Table 2. Example of a Trajectory Template in the Turenas Patch

Loudspeaker gainsCue Gain Direct Reverb Pitch
Point # 1 2 3 4 factor amount amount shift

1 0.7071 0.7071 0 0 0.2859 0.5347 0.4653 0.9773
2 0.7739 0.6333 0 0 0.2998 0.5475 0.4525 1.0314
3 0.8521 0.5234 0 0 0.3443 0.5867 0.4133 1.0884
4 0.9600 0.2801 0 0 0.4211 0.6489 0.3511 1.1109
5 0.8852 0 0 0.4652 0.4886 0.6990 0.3010 1.0660
6 0.6881 0 0 0.7256 0.4646 0.6812 0.3188 0.9800
7 0.5218 0 0 0.8531 0.3959 0.6292 0.3708 0.9347
8 0.4213 0 0 0.9069 0.3531 0.5942 0.4058 0.9454
: : : : : : : : :

Notated in the file-based YAML style and using
spherical coordinates, the same description
would be:

Note that the resulting trajectory will be slightly
different when interpolating in spherical instead of
Cartesian coordinates (c.f. Figure 2). In this exam-
ple, the source is moving along arced trajectories
rather than straight line segments. Choosing the
appropriate coordinate system can be a powerful yet
simple means of describing a variety of trajectory
patterns, which might run either in straight lines or
in circular or otherwise curved arcs.

To encode the distance attenuation within
the rendering process, the SpatDIF distance-cues
extension is needed. Using this extension, the
distance attenuation is computed based on the
distance from the sound source to the origin of the
coordinate system. At the same time, this distance
information can be used for regulating the wet/dry
ratio of the reverb. Similarly, using the doppler
extension, a pitch shift can be described.

According to Chowning (2011), the sampling
points shown in Table 2 were derived from the
Lissajous curve in Equation 1 with additional
scaling and translation (see right plot of Figure 4).

x = sin (2π · t) + sin (6π · t) (1)

y = cos (3π · t) + cos (7π · t)

By using the still unfinished Trajectory-generator
and Geometry-transform extensions from the
authoring layer, the Lissajous figures could be stored
in an abstract mathematical representation and then
rendered in any desired accuracy.

Real-Time Stream-Based System: Flowspace II

A number of scenarios for using SpatDIF in real
time can be envisioned. The obvious use case is live
control of spatialization during performance, using
a joystick or a MIDI console. A further use case is a
remote, co-located performance, where the state of
two sound scenes is synchronized across a network.
Finally, any system that generates control data on
the fly can benefit from streaming the spatialization

18 Computer Music Journal



−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8 1
2

3

4

5

67
8

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

8

Figure 4. Left:
Reconstructed Lissajous
trajectory from the cue
points in Table 2. Right:
The Lissajous curve based
on Equation 1. The
loudspeakers are placed in
a square facing inward

toward the listener. The
virtual space is measured
here in Cartesian
coordinates, where the
unit is the distance of each
speaker from the x and y
axes.

information using SpatDIF, especially when working
in a modular fashion.

This last use case is exemplified by the inter-
active audiovisual installation Flowspace II by Jan
Schacher, Daniel Bisig, and Martin Neukom. The
work was shown in the fall of 2010 at the Gray
Area Foundation for the Arts in San Francisco as
part of the group exhibition “Milieux Sonores”
(Maeder 2010). The installation presents the visitor
with a dodecahedron of four meters in diameter.
Located in its vertices are 20 inward-facing speakers,
creating a regular spherical speaker array (Bisig,
Schacher, and Neukom 2011), as can be seen in
the video documentation of the work, available
at www.jasch.ch/flowspace.html. The installation
deals with simulation of lifelike autonomous sys-
tems (Schacher, Bisig, and Neukom 2011). Three dif-
ferent artworks are shown, each based on a different
swarm simulation whose specific flocking algorithm
controls both a musical and a visual composition.
The swarm simulations themselves can be manipu-
lated by the visitors using a large touch surface.

The interesting aspect in the context of this
article is the system architecture used with the
three simulations, each controlling a sonic and
visual rendering (see Figure 5). The components
of the system are written in different software
environments and change depending on which
piece is running. All control information flows
through the network, encoded as OSC messages. The
control and simulation parts fulfill the role of the
authoring layer (layer 6) of the stratified approach.
Control data from the intermediate interpreter

layer are transmitted to the Synth and Audio-
Renderer. The setting of state of the filter bank—a
necessary component for driving the speaker array—
is controlled by the master state-machine using
SpatDIF layer 3 commands. The SpatDIF streams
provide the common interface for these modules.

Figure 6 shows the SpatDIF stream with the two
types of source which are derived from the flocking
algorithm. The first type are members of the primary
flock and are called “agent,” and the second type
belong to a secondary flock and are accordingly called
“secondary.” A piano sound is played when one agent
bumps into another or reaches the edge of the flock.

Implementations

The definition of the SpatDIF specification is closely
linked to simultaneous software developments in
the community, which fully or partially support the
SpatDIF namespace.

Jamoma is a layered architecture of software
frameworks for interactive systems, mainly tar-
geting the real-time processing environment Max
(Place, Lossius, and Peters 2010). Jamoma offers ex-
tended support for sound spatialization and provides
modules for a number of rendering techniques. A
standardized interface of SpatDIF-compliant OSC
messages is used for communicating source and
speaker positions to all of these modules, making
it easy to substitute one rendering technique with
another when developing spatial sound content for
artistic and research purposes. As previously dis-
cussed, the SpatDIF specification allows statements
to be expressed using alternative units for values.
Depending on the context, the choice of one unit
or the other might improve readability or simplify
the description of spatial movements over time.
The Jamoma DataspaceLib implements this concept
by allowing parameters to be described using a
number of alternative units (Place et al. 2008b).
Spatial positions, for example, can be described
using Cartesian or spherical coordinates, as well as
a number of other options. The RampLib enables
tweening or gradual transitions to new values (Place
et al. 2008a). A prototype implementation of the
SpatDIF extension for interpolations is available
by combining the DataspaceLib and the RampLib.
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Figure 5. Flowspace II
system, structure, and
data flow.

Figure 5

Figure 6. SpatDIF excerpt,
formatted in the OSC
style, showing two types of
source from Flowspace II.

Figure 6

This affords simple descriptions of a rich set of tra-
jectories and interpolations. Interpolations between
positions expressed in Cartesian coordinate can be
used to create movements along straight lines in
space, whereas interpolations between positions
in spherical coordinates enables the description of
circular and spiraling movements, as illustrated in
the Turenas Lissajous example (c.f. Figure 4).

The Institute for Computer Music and Sound
Technology (ICST) Ambisonics tools for Max
(Schacher and Kocher 2006) can easily be adapted by
users in order to apply OSC messages defined in the
SpatDIF namespace to the control of the positions
of point-sources and speakers in a sound scene. Au-
thoring and rendering processes are both available in
this tool set. The former generate, and the latter con-
sume, messages that correspond to layer 5 for scene
description, layer 4 for encoding, and layer 3 for de-

coding. This implementation of Ambisonics is used
by a large community of musicians, researchers, and
artists worldwide. The ease of use and simplicity of
handling make it an ideal testbed for a typical Spat-
DIF workflow. In addition, the standalone digital
audio workstation (DAW) editor for multichannel
surround sound, “Choreographer”—also developed
by the ICST—utilizes SpatDIF meta descriptors for
the storage and playback of speaker settings.

For the computer-aided composition environ-
ment OpenMusic, from the Institut de Recherche
et Coordination Acoustique/Musique (IRCAM),
two libraries exist that provide SpatDIF support:
“OMPrisma is a library for the control of sound
source spatialization and spatial sound synthesis
in [. . . ] OpenMusic. All spatial sound rendering
classes in OMPrisma share a common control in-
terface in compliance with SpatDIF specifications”
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(Schumacher and Bresson 2010). OM-Spat, a library
for the creation and rendering of spatial scenes in
OpenMusic, implements a storage of the source
trajectories and spatial attributes using the SDIF
format. Generated SDIF files can be rendered by
Spat-SDIF-Player, a player application developed in
Max for the representation and real-time streaming
of SDIF spatial description data. As stated by Bres-
son and Schumacher (2011, p. 4), “The transmitted
spatial description data are formatted in OSC follow-
ing the SpatDIF specification and can be received,
interpreted and applied to sound sources or signal
generators by any external spatial sound renderer or
environment compliant with this protocol.”

Conclusion and Future Work

SpatDIF provides a concise syntax for describing spa-
tial sound scenes and the additional information nec-
essary for authoring and rendering spatial audio. A
minimal, lightweight core is provided that addresses
spatial scene descriptions. Although minimal, the
core covers the fundamental descriptors, and is
useful for a wide range of applications. For more spe-
cialized tasks such as authoring, extended descrip-
tions, and special rendering techniques, SpatDIF is
expanded by a growing number of extensions. The
full specifications can be found at www.spatdif.org.

This article has presented the principles that guide
the definition of SpatDIF, shown the structure of the
syntax, and presented two use cases that illustrate
the two main paradigms where SpatDIF is applied.
Chowning’s Turenas serves as an example of using
SpatDIF in a file-based storage format. Composed
prior to performance, this historical piece can bene-
fit from the recasting in a SpatDIF description. This
separates the interpretation from the original con-
straints and through generalization allows the piece
to be played on larger speaker arrays and the use
of different spatialization techniques. The stream-
based transmission format, on the other hand, was
discussed in connection with the audiovisual instal-
lation Flowspace II, where the utility of applying
SpatDIF in a complex modular workflow was shown.

Future work will emphasize the development
of additional extensions (see the dashed frames in
Figure 3). This will be coordinated as a collaborative
effort within the SpatDIF community. Interested

parties are encouraged to implement the existing
SpatDIF specifications within their own working
environment and are invited to contribute to the
process of formulating further extensions. As the
number of extensions grows, it will be necessary to
research in more detail how to deal with increasing
complexity and to find an approach for handling the
concept of “gracefully failing.”

Currently, the SpatDIF workgroup is developing
a reference application that implements parsing of
the core descriptors and provides the basic functions
required for rendering SpatDIF. This rendering
engine will also serve to validate scenes and will
provide a simple software solution for reproducing
stored or streamed SpatDIF scenes. Furthermore, its
source code will serve as a reference implementation
of a SpatDIF parser.
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