http://cnmat.berkeley.edu/publications/new-network-and-communications-protocol-electronic-musical-devices

A New Network and Communications Protocol for Electronic Musical
Devices

Keith McMillen, David Simon, David Wessel, and Matthew Wright

Center for New Music and Audio Technologies (CNMAT)
Department of Music
University of California at Berkeley
1750 Arch Street
Berkeley, CA 94709

Zeta Music Partners
G-WIZ
2560 9th Street, Suite 212
Berkeley, CA 94710

e-mail: mcmillen @ CNMAT.Berkeley.edu, wessel @CNMAT.Berkeley.edu, matt@CNMAT. Berkeley.edu

Abstract

An inexpensive, moderate speed network protocal with bounded latency is proposed for communication
among computers, electronic musical instruments, and related media devices. This protocol, that we call
ZIPL, is presented in terms of the OSI layered network model. We describe a particular physical and data
link layer for a token-ring network that supports a peer-to-peer architecture. We then describe, in some

detail, the Music Parameter Description Language (MPDL), one of the application layers.

1 Introduction

While a number musical applications have been well
served by MIDI, there remains considerable
frustration with this primarily keyboard-oriented
protocol. MIDI is not really a network. It has low
bandwidth, which it uses to only 80% efficiency.
MIDI has an awkward addressing scheme for
controlling musical events and provides no
mechanisms for high-level control. With these
shortcomings in mind and with a desire to provide for
musically expressive control that goes beyond the
keyboard model and addresses alternate controliers,
we propose the ZIPI network protocol for electronic
musical devices.

The ZIPI network specification defines a collection of
protocols that allow musical instruments, computers,
synthesizers, mixing consoles, lighting controls, and
other similar devices to communicate with one
another. The ZIPI protocols conform to the "Open
Systems Interconnection” (OSI) model developed by
the International Standards Organization for
separating computer networks into various conceptual
layers [Tanenbaum 1989]. In this paper we will
concentrate on one of ZIPI's protocol layers, the
Music Parameter Description Language (MPDL)
application layer, but a brief overview of the ZIPI
physical and data link layers precedes. A more
detailed presentation of ZIPI can be found in an issue
of the Computer Music Journal [McMillen 1994,
McMillen, Wessel, & Wright 1994, McMillen,
Simon, & Wright 1994, Wright 1994a, 1994b,
1994c].

ICMC Proceedings 1994

443

2 Physical Layer

The ZIPI physical layer is a token ring architecture
that provides for a deterministic, low-cost, efficient,
moderate speed (250K to 20M bits/second), and low
latency network. Logically, ZIPI devices are
connected in a ring, in which each device passes data
to the next one around the ring. However, as shown
in Figure 1, the user is spared the complexities of
cabling the ring and each device is connected to a
"hub" at the center of the star.

ZIPI
device

ZIPI
device

Figure 1
ZIPT's ring network architecture hidden in a hub

Devices are connected to the hub by a 7-wire cable
with both directions of data flowing through it. The
ZIPI physical implementation is synchronous and
each connection carries a clock, data, and current
line; the seventh wire shields the entire cable. ZIPI
uses an opto-isolated current loop and either a 7-pin

Audio Hardware, Networking

http://cnmat.berkeley.edu/publications/new-network-and-communications-protocol-electronic-musical-devices

DIN or 8-pin mini-DIN connector. The preferred
implementation of a ZIPI network device is based on
the 8530, an inexpensive serial communications
controller chip available from Zilog and from AMD,
or one of its close relatives. The 8530 running in
"SDLC Loop Mode" implements most of the physical
layer as well as some of the data link layer.

3 Data Link Layer

In addition to sending and receiving frames of data,
ZIPI's data link layer establishes a unique address for
each device, optionally sends acknowledgements of
received packets, discards garbled packets by
examining a CRC error detection checksum included
with each packet, and negotiates with other devices
on the network to determine the clock speed at which
the network runs.

4 Application Layer

ZIPI contains several application layer protocols.
These include the MPDL language for musical
control, the MIDI protocol, and data dump protocols
for samples and other forms of bulk data. We
envision the definition of application layers for studio
automation, lighting, and other media.

4.1 The Music Parameter Description Language
(MPDL)

MPDL is for the control of music events. It encodes
parameters and delivers them to notes or groups of
notes on networked synthesizer(s). These parameters
might come from a controller like a keyboard, a
guitar controller system, or a computer. MPDL
includes parameters that are well understood and
universally implemented, such as loudness and pitch,
with support for parameters such as brightness and
other timbral representations that should be more
common in the future [Wessel 1985]. A large
number of parameters remain unspecified assuring
expandability and flexibility.

The basic structure of an MPDL packet is shown in
Figure 2. Keep in mind that some additional bytes
are necessary for the lower layers of the network. For
the ZIPI physical layer and data link layers 7 bytes
are required, whereas an implementation of MPDL
on Ethernet would require more.

Note Note Note
Address | Descriptor]Descriptor
20 bits i i

Note Note
Descriptor|= = = =| Descriptor
any size any size

Figure 2
An MPDL packet

Audio Hardware, Networking

The note address indicates where the note descriptor
data that follows will be applied. Packets can contain
multiple note descriptors which helps cut down on
network overhead. A list of some of the note
descriptors for synthesis control is give in Table 1.
The MPDL specification provides a similar list of
controller note descriptors like key number, key
velocity, percussion surface coordinates, and so on.
We think it important to maintain a distinction
between synth control parameters and measurements
from controllers. A mapping function can be
provided to link the two kinds of data.

A special note descriptor is reserved for a 32-bit time
tag. This time tag is associated with the entire
contents of a packet and can be used to assure greater
timing accuracy and remove jitter in sequencers and
MPDL data files that encode a performance or score.
This is because controllers can time tag data nearer its
source and synthesizers can use time tags to assure
synchronization of events as in dense chords. For
an explanation of how such time tags can be used in a
responsive real-time system see Anderson and
Kuivila [1986].

4.2 Address Space

A real difficulty with MIDI is that a note's address is
its key number which indicates its pitch. Problems
arise when a note's pitch changes over time or when
there are two overlapping notes played on the same
channel with the same pitch. In MPDL notes have
individual addresses that are unrelated to their pitch
or any other musical control parameter. A MPDL
note number is just a number to identify that note,
and an MPDL note number can have any pitch.

Another drawback of MIDI is that many of the
controllers are associated with a MIDI channel rather
than an individual note. For example, it is impossible
to individually bend the pitch of one of the notes
sounding on a given MIDI channel. You bend one
and you bend them all.

Families
63

Instruments
127 per

Notes
127 per

Figure 3
The MPDL hierarchy

The MPDL note address space is a three-level
hierarchy. The names for the layers of the hierarchy
fit an orchestral metaphor: There are "notes" within
"instruments," and the instruments are grouped into
"families." Any note descriptor message can be

ICMC Proceedings 1994

addressed to any level of the hierarchy: a stream of
pitch messages could go to a single note that makes
it bend independent of other notes on the instrument,
while a loudness message could be used to control an
entire family.

An instrument cannot change its family and belongs
to only one family. The orchestral metaphor is just a
metaphor; the purpose of a ZIPI address is to
uniquely specify which note or group of notes a
message applies to.

The device sending the note information must keep
track of which notes are sounding and which are not,
so that it can update parameters of already sounding
notes. The device receiving the note information, of
course, will not be capable of 1016127 (63 * 127 *
127) note polyphony, so it must allocate the available
synthesis resources. It will also not be capable of
storing parameters for 1016127 different notes. It is
expected that ZIPI controllers will in practice only
use a small subset of the address space; algorithms
can take advantage of that expectation to store and
record parameter values very quickly and without
using very much memory.

4.3 Musical Control Parameters

After the note address has been chosen, a MPDL
packet may contain any number of note descriptors
intended for that address. A note descriptor gives a
new value for a parameter, e.g., "pitch is B flat 2" or
"pan hard left." The note descriptor consists of a note
descriptor ID, which indicates which parameter is
being updated, and some number of data bytes, which
give the new value for that parameter. In Table 1 we
show MPDL's current list of defined note
descriptors. Each of the note descriptors has an 8 bit
note descriptor ID that is omitted from the table.

Parameter Combining Rule Bytes
Articulation “and" 1
Pitch add 2
Frequency in Hertz overwrite 4
Loudness multiply 2
Amplitude multiply 2
Brightness multiply 1
Even/Odd Harmonic Balance multiply 1
Pitched/Unpitched Balance multiply 1
Roughness multiply 1
Attack character multiply 1
Inharmonicity multiply 1
Pan Left/Right multiply 1
Pan Up/Down multiply l
Pan Front/Back multiply 1
Spatialization distance multiply 2
Spatialization azimuth angle add 1
Spatialization elevation angle add i
Multiple output levels multiply 2
Program Change Immediately overwrite 2
Program Change Future Notes overwrite 2
Timbre space X dimension add 1

ICMC Proceedings 1994

Timbre space Y dimension add 1
Timbre space Z dimension add i

Table 1
MPDL's defined note descriptors

4.4 Articulation
If the note descriptor ID is "articulation,” the two

high-order bits of the data byte specify one of the
three articulation types given in Table 2

High-order bits Articulation type
11 Trigger
10 (not used)
01 Reconfirm
00 Release
Table 2
MPDL Articulation Types

Trigger messages start a note; the new note will have
any parameters that were set for that note before the
trigger message was sent. Pitch and loudness are not
part of the trigger message, so they should be set to
the desired levels either before the trigger message is
sent, or in the same MPDL packet as the trigger
message. The order of the pitch, loudness, and trigger
note descriptors within a ZIPI packet does not matter,
all the updates in the packet are made prior to the
trigger.

The note then sounds until a release message is
received. If a new trigger message comes before the
release message comes, the note re-attacks with no
release. This is useful for legato phrasing.

A note retains its parameters after a release message;
receipt of a new trigger message will articulate a new
note with the same parameters as before.

Low-order bits Behavior

000001 Release the note naturally
000010 Instantly silence the note
000011 Release the note naturally,

unless it's still in the attack
portion of the tone, in which
case complete the attack
portion and then release
naturally

Table 3
Types of Release Messages

The remaining 6 bits of the articulation data byte
specify exactly what kind of articulation occurs. In
music, "articulation” can mean a lot more than "on
and off." There are a large number of instrument-
specific articulation styles, e.g., hammer-ons for
guitar, lip slurs for brass instruments, and heavily
tongued attacks for reed instruments. The problem

Audio Hardware, Networking

with encoding these articulation types is that they are
meaningful only in the context of certain instruments;
it's difficult to say how to implement a hammer-on on
a clarinet. We have specified some release types in
Table 3. We are working to define more abstract
articulation categories, expressed in a way that
doesn't refer to a particular instrument. Hopefully
these will be in a future version of MPDL as the
possible values for the remaining six bits.

4.5 How the Levels Interact

What happens if the user sends an amplitude of 1 to a
note, then an amplitude of 10 to the instrument
containing that note, then an amplitude of 100 to the
family containing that note? What's the actual
amplitude of the sound produced?

There are four different ways to combine parameter
values passed to different levels of the hierarchy.
Each parameter uses one of these four rules. They
are: "and," "multiply," "add," and "overwrite." A
column in the Table 1 of note descriptors tells which
of these four rules each parameter uses.

Only articulation uses the "and" rule, which is
described in the detailed specification [McMillen,
Wessel, & Wright 1994].

Most parameters use the "multiply" rule, meaning
that each level of the hierarchy (notes, instruments,
and families) stores its most recent value for the
parameter, and the actual value that comes out is the
product of these three numbers.

Amplitude is an example of a parameter with this -

rule. If two notes of an instrument have amplitudes
of 20 and 10, they will have a relative amplitude ratio
of 2:1 no matter how high or low the instrument's
amplitude gets. :

Note that what are being multiplied are offsets from a
base value, and that the "base value" depends on the
particular patch being played on the synthesizer. A
flugelhorn will naturally be less bright than an oboe,

so the mid-scale brightness value for a flugelhorn will

produce a much less bright sound than the mid-scale
brightness value for an oboe.

The "add" rule is just like the "multiply" rule, except
that the three values for the parameter are added
together instead of multiplied together. Pitch, for
instance, is taken as an offset from middle C, and the
offsets accumulate additively. If a family receives a
pitch message of hex 7f00, which would be middle
C#, thé effect will be to transpose everything played
by that family up a half step.

Acknowledgements
This work was supported in part by Grant C92-048

from the California State Department of Commerce
Competitive Technologies Program. We would also

Audio Hardware, Networking

446

like to thank the following individuals for their
valued comments, sometimes very critical, regarding
the ZIPI and MPDL specification: Jim Aiken, David
Anderson, Marie-Dominique Baudot, Don Buchla,
Richard Bugg, Tim Canning, Chuck Carlson, Lynx
Crowe, Rob Currie, Steve Curtin, Peter Desain, Kim
Flint, Adrian Freed, Guy Garnett, Mark Goldstein,
Henkjan Honing, Dean Jacobs, Michael Land,
Michael Lee, Carl Malone, Bill Mauchly, Peter
McConnell, F. Richard Moore, Chris Muir, David
Oppenheim, Stephen Pope, Rob Poor, Miller
Puckette, John Senior, Warren Sirota, John Snell,

Michael Stewart, Tovar, David Zicarelli. ‘

References

[Anderson & Kuivila 1986] David Anderson & Ron
Kuivila. Accurately Timed Generation of Discrete
Musical Events. Computer Music Journal, 10(3): 48-
56. (1986)

[McMillen 1994] Keith McMillen. ZIPI-—Origins and
Motivations. Computer Music Journal, 18(4). (in
press)

[McMillen, Simon, & Wright 1994] Keith McMillen,
David Simon, & Matt Wright. ZIPI Network
Summary. Computer Music Journal, 18(4). (in press)

{McMillen, Wessel, & Wright 1994] Keith McMillen,
David Wessel, & Matthew Wright. ZIPI's Music
Parameter Description Language. Computer Music
Journal, 18(4). (in press) :

[Wright 1994a] Matthew Wright. ZIPI Examples.
Computer Music Journal, 18(4). (in press)

[Wright 1994b] Matthew Wright. MIDI/ZIPI
Comparison. Computer Music Journal , 18(4). (in
press)

[Wright 1994c] Matthew Wright. ZIPI Frequently
Asked Questions. Computer Music Journal, 18(4). (in
press)

[Moore 1988] F. Richard Moore. The Dysfunctions
of MIDL. Computer Music Journal, 12(1). (1988)

[Tanenbaum 1989] Andrew Tanenbaum. Computer
Networks , Englewood Cliffs, New Jersey: Prentice
Hall (1989)

[Wessel 1985] David Wessel. Timbre space as a
musical control structure In Roads, C. and J. Strawn,
eds. Foundations of Computer Music, Cambridge:
The MIT Press. 640-657. (1985)

ICMC Proceedings 1994

