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In this paper, we present the architecture of a new generation musical sound synthesis
machine. The machine is the first of its kind, combining state of the art ideas from mul-
tiprocessing and VLSI design in a system that produces sound in realtime by simulating
the physical behavior of musical instruments. The machine will be compact, inexpen-
sive, and easily scalable offering much higher performance per unit board area than
would be possible using commercially available processors.

Previous generation machines, such as the Caltech UPEs[1] mainly addressed the arith-
metic computation needs of instrument simulation. The insights gained with these sys-
tems demonstrate the feasibility of the approach but also clearly indicate that single chip
systems cannot offer sufficient performance to simulate ensembles of instruments. To
overcome this problem the MIMIC system includes a special purpose network managed
by an on-chip unit.

Our machine relies heavily on the use of memory, both within our custom processing
chips and in commercial memory chips giving rise to the name Memory Intensive Music
Integrated Circuit (MIMIC).

1. Introduction

The goal of the MIMIC project is to develop a parallel computer architecture specifically for the task
of generating musical sounds based on physical simulation. The machine will be compact, inexpen-
sive, and easily scaled up or down in size and performance to meet a variety of applications.

A primary goal of the project is to design a system that achieves a much higher performance per
board area than would be possible using commercially available processors.

This project continues work on custom architectures for music synthesis previously completed at
Caltech[1,2). Custom VLSI chips containing many simple bit-serial processing elements were built
and used to implement instrument models based on lumped approximations to acoustic elements.
That work provided promising results and validated the basic approach but was limited in its perfor-
mance because no provisions for parallelism at the system (multi-chip) level were made. The
MIMIC project addresses the issue of inter-chip communication in multi-chip systems and, at the
same time, the basic processing function of each chip is extended to allow more general modeling
techniques.

The architecture we have designed is a multiple-instruction-stream multiple-data-stream (MIMD)
multiprocessor comprising identical pipelined processing chips connected via a network. Each chip
contains a 32bit ALU, 64Kbit of RAM, a network interface, and a special external DRAM (dynamic
random access memory) interface supporting operations using digital delay lines and table lookup.
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The machine is designed as a multi-processor in such a way that it may be scaled in order to fulfill a
range of performance goals and applications by adjusting the total number of processing nodes in the
system. A standard workstation will be used as a host to our machine and serve the needs of applica-
tion development and realtime user interaction. Ease of extensibility is enhanced by each node hav-
ing signal routing primitives that are independent of the size or the topology of the network.

Because of the modest communication needs of the sound synthesis algorithms, bit-serial connec-
tions among processing chips and external components suffice. Bit-serial connections reduce the
number of pins on each chip and consequently allow the use of smaller packages, achieving higher
board density than would otherwise be possible.

A low-end configuration (see Figurel) will include 27 processing nodes (in a 3 by 3 by 3 node
cube), each computing about 20 million operations per second (MOPS) where each operation is a
multiply-add (a*b+c) where the entire system is computing about 540 MOPS. Not counted are the
other simultaneous activities on the chip which manage signal flow through the network, delay lines,
and table lookup operations. In our applications the performance of the system will come very close
to these maximum bounds. A system of this size is sufficient for performing a realistic simulation of
a concert grand piano or a small musical ensemble. A larger system of about 100 nodes on a board
could implement an ‘‘orchestra in a box’’.
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FIGURE 1: MIMIC system level architecture. Processing nodes are typically arranged in a
multidimensional mesh. Each processing node comprises a MIMIC chip and a commer-
cial DRAM (dynamic random access memory) chip in approx. 1.5in. Nodes connect to
their nearest neighbors through bidirectional links for transmitting signal data and control
information from the host injected into the network at multiple points. All connections from
the host and between nodes are bil-serial.

2. Machine Requirements

Exact system requirements are difficult to pin down. Work on instrument modeling has only begun
and is slow because of lack of suitable hardware, we will not know exactly how the machine will be
used until it is built. We do know, however, general requirements based on earlier machines and on
several experimental musical instrument models.



2.1. Musical Sound Synthesis Background

The processing node is designed to support a few basic primitives that form the computational ele-
ments of a particular class of sound synthesis algorithms. Figure 2 shows the set of computational
primitives supported by our machine. These primitives form the lowest-level user interface to the
machine. Software automatically maps a computation graph represented with these primitives to
instructions and routing information for the MIMIC machine.
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FIGURE 2: MIMIC user level computational primitives. instrument models are made by
building graphs of these primitives. Inputs may come from the output of other primitives
or from the host computer.

The physical modcling algorithms have found general application in the synthesis of a wide range of
musical instruments including the human voice. They are fairly efficient and produce very realistic
sounds[3]. In this technique simple computational analogs to the components of musical instru-
ments are implemented and the interaction of these components is computed in detail. The simple
resonator circuit in Figure 3 shows a simple interconnection of primitive elements as may be found
as part of a complete instrument model.

FIGURE 3: Digital resonator circuit. This digital resonator configuration is
typical of the circuits used in musical instrument models. The coefficients
a, b and G are controlied by the host computer and adjust center frequen-
¢y, damping, and amplitude respectively. The input x comes from the out-
put of circuits modeling other instrument parts.

This technique is successful because the complex and rich behavior of musical instruments, and thus
the complexity of their sounds, is the result of the interaction among many simple elements. Each
element, for instance, may be one string on a guitar, the reed of a clarinet, or the bridge of a violin.
These elements when taken individually are fairly simple mechanical systems. In fact, in some
instances components can be approximated as lossless waveguides and implemented as simple
bidirectional delay lines[4]. Other components such as nonlinear elements can be implemented
using polynomial evaluation or, for more complex functions, table lookup techniques. Still other
physical components may be implemented as standard digital filters.



An experimental piano model has been devised and is shown schematically in Figure 4. It provides
a good target task for a small MIMIC machine and is representative of a wide range of musical
instrument modeling tasks. It works by modeling the strings, bridge, and sound board of a piano and
their interactions. The behavior of all pieces is computed simultaneously to capture the complex
coupling of the elements of real pianos.

L string —
' [ —» g ——left output

I string Sound- [ &

. board I o

236 . bridge — £
o L+ £ }—right output

Vo string L 2

FIGURE 4: Piano Model. This model has been devised to help guide - ur
machine design decisions. It works by modeling the pieces of a piano
(strings, bridge, sound-board) and their interactions. The summing network
is used to generate stereo sound image.

2.2. Model of Operation

Because the machine will simultaneously generate the sound of many different musical voices in
realtime, we provide each processing node with an independent control program so that each node
works on different sets of instruments or different parts of a large complex instrument. The program
for each node is loaded by the host computer prior to execution and is stored in each node. During
execution this program is repeated once every sample time. The current implementation is designed
to run at a typical sample rate of SOK samples per second. Our sound synthesis algorithms contain
no conditional execution; therefore, the processing nodes contain no hardware for conditionals. The
same set of instructions is repeated until changed by the host computer. Program changes, however,
are intended to occur on a very slow time scale (e.g., when a new instrument model is desired).
Instantaneous changes controlling the *‘playing of the instrument’’ are implemented by the host by
sending packets that change coefficient values within nodes.

2.3. Design Flow

The computation power per node, memory size per node, delay/table operations, the network size,
and inter-node communication needs were estimated by examining the requirements for simulating a
small ensemble or a concert grand piano as shown in Figure 4.

We examine the case of a small ensemble: On the average, each instrument requires 4 voices (for
example 4 strings). To compute the state of a voice, around 40 MADDs (multiply-adds) have to be
executed per sample period. Therefore an ensemble of 30 instruments will require on the order of
4800 MADD:s per sample period.

The estimation for a grand-piano is very similar: Each one of the 236 strings is modeled as an indivi-
dual voice for a total, with the inclusion of the sound-board simulation, of almost 10000 MADDs
per sample period.

Each of the voices usually requires one delay line or table lookup operation per sample period.

With the current technology available from MOSIS we expect to build a 20Mhz multiply-add unit.
Given a S0Khz sampling rate each processing node can perform 400 MADDs per sample period.
The above simulations will thercfore require the arithmetic power of 15 to 30 processing nodes.



Calculation of memory bank sizes is based on earlier experience with instrument modeling. Each of
the 400 MADD operations per sample period requires on average one coefficient from the host, and
one state variable. An additional 200 or so words of storage are used to double buffer coefficients
and buffer input/output operations resulting in a total on chip store of 1K words.

If we now distribute the computation across multiple processing nodes, we have to estimate the
communication needs between the nodes. The 10 voices which can be grouped into a single node
generate about 10 inter-node messages.

To control the simulation the host must periodically update the instrument model coefficients. The
required communication performance can be split into two categories: the sustained bandwidth and
the instantaneous bandwidth. The estimates for the performance were made by examining worst
case conditions.

We assume that each MIMIC node can support 10 musical voices and that each voice is controlled
by 40 coefficients supplied by the host for each musical note. Now if each voice can play 10 notes
per second, the total coefficient update rate is 4000 updates per second per node. With a sample rate
of 50000 samples per second and a expected communication clock rate of 20MHz, we arrive at an
average update rate of only 1 update every 12 or 13 sample periods.

More constraining than total average update bandwidth is instantaneous update bandwidth. This
bandwidth is needed to assure that when an update is made in the system that a tolerable delay is
maintained from the time the change is sent until the effect is heard. For interactive systems a 10ms
delay is usually not noticeable. Longer delays are acceptable especially if the delay is constant from
note to note. For a conservative measure w¢ assume in our system a situation were we wish to
change every voice and allow at most a 10ms delay. Changing 400 coefficients per node in 10ms
requires the host to send approximately 0.8 coefficients per sample period to each node. In some
cases the update coefficients can be precomputed and sent to each node and stored locally until they
are needed. Then a single control word can be sent from the host to trigger their activation. Each
MIMIC node contains double buffering on coefficient registers to help implement this scheme.

2.4. Summary of Machine Requirements

Table 1 summarizes our expected system requirements and capabilities for a typical small
configuration. The arithmetic requirements are relatively high and communication and memory
requirements low compared to a more conventional multiprocessor configuration.

TABLE 1: Summary of Machine Requirement Estimates.

Operation per node per node
per sample  per second
MADD (multiply-add) 400 20M
Inter-node 32bit packets 10 500K
Delay-lineftable 30 1.5M
Host updates 1 50K

The estimates are based on the simulation of a small instrument ensemble
or a grand piano. The processor clock rate is assumed to be 20Mhz with a
sample period of 50Khz.

3. The MIMIC Network

A typical configuration of MIMIC chips is shown in figure 1. The unit of communication between
MIMIC chips is a single 32-bit word, usually representing a sound sample value, and a packet is
simply a word.



Because the control flow of MIMIC programs is linear (i.e., they have no conditional branches) the
communication pattern for each program is predetermined. The routing of all packets can be deter-
mined at compile time and loaded (in the form of a program) into the MIMIC chips. No routing
decisions are necessary at execution time and all problems relating to dynamic detection and correc-
tion of deadlock and collisions are avoided.

The fact that the communication pattem is static and routing is precomputed allows a simple solu-
tion to keep routing latency to a minimum. Because no packet headers are needed the packet can
routed through each node with only a one bit-time delay.

Communication cost is the price paid for parallel computation. Meshes and other topologies for
directly connecting processing nodes, though simple to build, never take full advantage of the raw
communication bandwidth provided by the pins on the nodes. Messages sent into the network,
while on route to their destination consume resources and block other messages. It is plain to see
that network efficiency is inversely proportional to the average path length in the network and that
the average path length is a function of the network topology.

During the design of our machine we were interested in knowing what fraction of raw communica-
tion bandwidth provided by the hardware could be effectively used in our algorithms. We studied
primarily three-dimensional toroidal meshes. The performance of several typical system
configurations are displayed in table 2. For these simulations we generated random pairs of nodes as
source and destinations for messages and assigned random times within the sample period. The goal
of the simulation was to find the maximum number of messages that can be routed within one sam-
ple period.

Approximately 70% of the raw channel bandwidth is lost to network topology. We experimented
with several routing algorithms all taking advantage of the fact that all routing patterns are known at
compile time. The simplest routing algorithm uses buffering, performs well, and is easy to support
in hardware. With this algorithm about 60% of the channels are kept busy. This means that at any
time an average of 40% of the channels are idle. Better channel utilization is possible with more
elaborate routing algorithms. This algorithm was chosen for its simplicity and fairly good perfor-
mance. The product of network efficiency and channel utilization gives us the effective pin-
efficiency. This efficiency factor reveals how much extra communication bandwidth we need to
build into the pins of our nodes to achieve a given level of actual network throughput. For systems
in our simulations this factor is between 3 and 6. One important result to note in table 2 is that even
the least efficient network (125 nodes) is able to transmit 12 messages on average between pairs of
nodes.

For our simulations we used a random spatial distribution of messages. In practice our algorithms
tend to exhibit locality in the communication pattcms and the average path length is actually less
than our simulations indicate. The simulation results are therefore pessimistic.
TABLE 2: Routing Simulation Results.
#nodes # messages network channel effective  #message

routed efficiency  util. chanutil.  per node
27 595 48 .62 .30 22
64 948 33 .61 20 15
125 1570 27 .61 .16 12

3.1. Host Communication

Some of the communication bandwidth lost to idle channels in our system is captured for use in
sending update messages from the host processor. Therefore, two separate types of communication
are supported by the network: 1) inter-node communications implementing data links in the compu-
tation graph, and 2) host-node communication implementing update links. Data links are



characterized at compile time, but the update links are only partially known. The maximum
bandwidth needed from the host to each node is known but the actual time when the information
will be sent is known only at run time; for it is the result of realtime user interaction with the
machine. At compile-time, after the data links are established through the network, daisy-chains are
traced out through the remaining unused channels in the network. Then at runtime the host can
reach any node along a daisy-chain.

This network arrangement provides a graceful way to trade inter-node data communication
bandwidth for host control bandwidth. This property matches well our observation that in our appli-
cations models requiring high communication between processing nodes have modest control
bandwidth needs and, conversely, losely coupled computations require high control bandwidth from
the host.

4. MIMIC Node

4.1. Machine Structure

The requirements of the algorithms and the communications within the machine result in the follow-
ing node structure. Each node has three major functional units: an arithmetic unit, a memory con-
troller, and a communication switch. The arithmetic unit is similar to those typically found in stan-
dard signal processing engines. Its main function includes multiplication, addition, and storing of
results in large on-chip register banks. The memory controller performs the address calculations
involved in implementing delay lines and performing table lookups. The delay line and table data
are stored in standard memory chips. The memory controller allows the relatively expensive arith-
metic unit to dedicate its computation to signals. The third major unit, the communication switch,
handles the flow of information in, out, and through the node. This switch is much simpler than
ones used in general purpose multi-computer architectures. In our case the communication patterns
within the network are known before the computation proceeds. Therefore it is possible to ‘‘com-
pile’’ the communication instructions and store them within each node. Each node does not need to
adjust its routing function dynamically. We call this fixed routing approach ‘‘compiled routing’’. In
addition to routing acoustic signals within the nctwork the node must manage the flow of informa-
tion from the controlling host computer.

Each processing node comprises a custom VLSI MIMIC chip and a com- o
mercial DRAM chip. The internal structure of a MIMIC chip is shown in TABLE 3: Chip Pins
figure 2. Internal units are connected via two intemnal 32-bit busses, the

IBUS for receiving input from off-chip and the OBUS for sending sam- DRAM control 16
ples off-chip. The structure and functions of the individual units are Network ports 12
described in subsequent sections of this report. The ALU/register unit Clocks/reset 4
preforms arithmetic operations on signals. Operands and results are stored Power 4
in memory arrays labeled MEM1 through MEM4. The network unit pro- —_—
vides a synchronous interface 1o six other MIMIC nodes. Signals are sent Total 36

and received bit-serially. The network unit allows each MIMIC chip to be

a source of data, a data sink, or a intermediate node in passing data within

the network. The table unit is a special unit for implementing delay lines and table lookup opera-
tions. This unit provides all the signals necessary for controlling the commercial DRAM chip. The
host-interface unit contains the control store and the mechanism for receiving setup and control
information from the host computer.

A design goal for our system was to keep the number of pins on our custom VLSI chip to a
minimum. This way we can employ a small package, thus maximizing the density of nodes on the
circuit board. The communication bandwidth requirements for the music synthesis algorithms indi-
cate that bit-serial communication among chips and with the host computer is sufficient. The exter-
nal pins requirements of the MIMIC chip are shown in Table 3.
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FIGURE 5: MIMIC Node Structure.

4.2. ALU/Register Unit

The ALU/Register (AR) unit performs arithmetic operations on signals as needed by sound synthesis
algorithms. The AR unit consists primarily of a 32-bit by 32-bit fixed point parallel multiply/add
unit (ALU) and four memory banks as shown in Figure 5. The memory banks are used to store
intermediate results, state variables, and coefficients supplied by the host computer. Because all
arithmetic operations are memory-to-memory operations, the memory banks can be viewed as large
register files.

The AR unit is designed to efficiently implement the multiply/add operation. This operation is
primitive to sound synthesis algorithms as well as many other signal processing tasks. Each opera-
tion fetches three operands and produces one result. To provide the necessary data bandwidth to the
multiply/add unit, four memory accesses are required on each processing cycle.

A common way to achieve concurrent memory accesses is with multi-ported memory arrays.
Multi-porting has the disadvantage that the chip area consumed by a the memory is significantly
more that the single-ported version (almost 2 times for dual-ported, more than 3 times for quad-
ported). We have chosen to implement four separate memory banks to achieve four memory
accesscs per cycle. At compile time the memory access patterns are analyzed and program variables
and coefficients are assigned to memory banks in such a way as to provide conflict free access to
four memory locations per processing cycle. Of course, it is possible to write programs with vari-
able use patterns where memory accesses conflict. Memory access conflicts result in sequential
memory access resulting in lower system performance. We have found that with our sound syn-
thesis algorithms very few conflicts occur (a few percent).

The number of words per memory bank is primarily governed by the available chip area. The
current implementation of the MIMIC chip has four 256 word memory banks.



The current MIMIC node implementation uses a 256K by 4-bit DRAM yielding a total sample
storage of 32K samples per MIMIC node. Because each sample is 32 bits long, each delay line or
table operation requires eleven clock cycles allowing up to 36 delay line or table operations per sam-
ple period.

5. Implementation

Figure 6 shows the chip floorplan for the
MIMIC processor node. The layout is
targeted for 1.2um CMOS technology.
Chip dimensions are 9.0mm by 8.4mm.
We expect power consumption to be a
modest 250mW per chip.

The status of the MIMIC project is as fol-
lows: we have written both a high and
low level simulator of the MIMIC chip
and tested the design using several appli-
cation programs based on physical simu-
lation of musical instruments. Software
has been written to generaie program-

variable to memory bank assignments PROGRAM

and scheduling of arithmetic and STORE

input/output instructions. Layout of criti- INTERFACE
cal sections has been completed for floor-

planning and size and performance esti- PADS

mates. We are currently in the process of

fine-tuning the low-level design of the FIGURE 6: MIMIC Processor Node Floorplan.
chip and generating the complete chip

layout.

6. Summary

In this paper we have presented the architecturc of a novel machine, called MIMIC, designed
specifically for the task of producing sound in realtime by simulating the physical behavior of musi-
cal instruments. Although the machine is special purpose many of the ideas have direct application
in other realtime signal processing tasks.

The machine achieves high performance per unit board area by using custom VLSI processing chips
in conjunction with commercial DRAM chips. The high system performance required to simulate
complex instruments or small ensembles of instruments precludes single processor solutions. The
MIMIC architecture is designed as a MIMD array of processing nodes interconnected by a special
network and controlled by a host computer.

We have shown, that this network can be implemented using low pin-count bit-serial lines. It is
scaleable from a few nodes to over 100 nodes. The routing can be performed statically at compile
time greatly reducing the complexity of the on-chip network interface unit. Moreover, the static
schedule can guarantee the realtime performance.

We have shown that by concentrating on the primitive operations found in our application, musical
sound synthesis, we are able to build a flexible processor node which provides performance compar-
able to latest gencration commercial DSP processors.

The performance obtained per unit board area (20MOPS in approx. 1.5in7') cannot be matched by
commercially available DSP processors. Those processors use large, high pin-count packages,



consume over 1 Watt of power, and are not designed to work in a multi-processor configuration.
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